

- Fur Pipeline developed at DF for Sesame Street: Once Upon a Monster

(Introduce ourselves and also special thanks to Tim Schafer, and to Raymond Crook

for modelling and animation used this talk)

Our basic motivations were to make a system that could produce pretty decent quality

fur, but most importantly that this system be flexible and easy to use from an

authoring standpoint. We had many characters using fur, and very little art time to do

all the authoring.

The other large restriction placed on us was the fairly old GPU in the Xbox-360. This

was also a Kinect title, which meant it would also take a chunk of our frame time, and

we needed to keep everything very low-latency (as little buffering as possible to

reduce input latency). The GPU time restrictions ended up ruling out many of the

more modern approaches used when rendering and shadowing fur, and forces us to

do GPU-suited operations like skinning, sorting and tessellation on the CPU. We

believe that none of these things would be necessary on a modern GPU (and in fact,

most of the algorithms would be very well suited for GPU implementation).

One might assume we went with shells and fins (often seen in games) for our fur. We

did not.

We simulate, sort and render thousands of individual “fur strands”.

Why did we not go with shells and fins?

We had a fur system inherited from Brutal Legend, which was developed under some

similar and some very different constraints. Most differently, the old system had to be

very cheap to render, as there could be many furry characters on screen at once. But

it also needed to be high-quality and suitable for "hero" shots, as the player had to

ride the beast in several missions. It turns out this ability to LOD, even in a title when

there were far fewer characters rendered at once, would be fairly useful. And even

though we were rendering fewer characters for Once Upon a Monster, they were

generally a lot larger on screen, so their fur needed to be a lot higher in detail than the

Brutal Legend characters. All that said, we thought it would be worth trying to

increase the quality of the system to that needed by Once Upon a Monster and save

the time building a new system (as with artist time, there was very limited programmer

time).

One of our major motivations when examining what approach to take for for OUaM

was to ensure we could faithfully represent Sesame Workshop characters.

We suspected they would be fairly particular about how their characters were

represented on-screen, and knew we couldn't afford to custom-author individual fur

geometry for each character in the game, mainly due to our small team size. Our

solution needed to be semi-automated, mainly due to that bandwidth constraint, but

also to make it easier to handle performance optimizations later down the road.

They gave us a lot of reference material, and there was a lot of back and forth

iteration between us and Sesame Workshop. For example, early versions of Elmo

matched the more haphazard fur configuration that he had in earlier Sesame Street

episodes, but then later we were told that Kevin Clash, the puppeteer behind Elmo,

liked grooming the fur on Elmo's head and face in a specific, slicked back way in later

episodes, so we needed a system that gave us finer control.

We also made the mistake of telling our concept artists that we could do some

amount of fur.

Which ended up with every single one of the concept characters being covered in fur.

Marco concepts + in-game shot.

Tallulah concept and in-game shot.

Seamus concepts and in-game shot.

Additional monsters, in-game shots.

Basic fur is made up of a few pieces of data:

- Data Files

- Control Maps

- Maya scripts

- Shader Textures and Parameters

- Fur is authored as a collection of several distinct layers

- Generally these correspond to spatial regions on a character, both to aid

performance and to group collections of fur strands that have a similar appearance.

- Each fur layer has a list of global parameters that drive anything from the

appearance of the fur to its simulation properties

- Each layer also has a set of control maps whose different color channels modulate

specific parameters

-Each fur layer (the top of the head, the eyebrows, and the mutton chops) has a list of

default values for properties such as the overall density of fur strands, the width and

length of each strand (with a variance), and the position offset from the underlying

mesh surface.

- top texture corresponds to top of head, different channels modulate the default

values set in the data file

- red channel scales the density value---fully red scales that region to twice the default

density value, fully black scales that value to 0

- blue channel scales length, green channel scales width, and so on

Once the general size and density of the fur is set, additional layer properties provide

controls over how the fur conforms to the character's body.

- strands are composed of 3 segments

- Curl value controls the polynomial that defines how the curvature is applied along

these segments each strand.

- Positive values increase the amount that the fur curls "towards" the surface, and

negative values push it away.

- This also allows the fur to better fit the shape of the character and prevents many of

the strands from intersecting the body.

- To allow for more gnarled, matted fur, twist provides controls how each strand

rotates in the plane of the normal to the surface.

- Both curl and twist have variance range values, and also control map channels that

scale the default value

After setting global layer properties, we move onto defining the direction of the fur

strands

- didn't have time to author the direction and placement of each individual strand (had

1 to 2 working days per character from start to final version, on avg)

- tried a bunch of different things (global direction per layer, joint-aligned directional

vectors per layer), but they all didn't give fine enough control, esp for Sesame

characters

- Ended up with a method of defining comb vectors, on the mesh surface in Maya.

- Strands are interpolated using both the relative position and normal of the

strand. The normal is especially important for regions where surface direction

changes quickly, such as armpits and shoulders

- Strands outside of the set distance range would default to a joint direction, so we

only needed to add comb vectors where we needed finer control

- For performance and artistic reasons, only fur strands within a layer are sorted

against each other. Otherwise, layers are bounding box sorted--we also had control

over the sort bias of each fur layer

In this example you can see the bounding boxes of the 4 layers, in addition to a sort

bias value for each layer (the head, the body, and the forearms)

- It was very easy to organize and control the placement of each sort layer, and it

made it possible for more complicated layouts such as this one

- After authoring the overall layout, comb, and length/width properties of the fur, we

now need to author the appearance of each strand of fur

- The fur strand shader has the following inputs:

- Diffuse color of the strand is sampled from underlying mesh diffuse texture (or some

simplified version of it)

- Overall tint and specular values

- After authoring the layout, comb, and length/width properties of the fur, we now need

to author the appearance of each strand of fur

- The fur strand shader has the following inputs:

- Diffuse color of the strand is sampled from underlying mesh diffuse texture (or some

simplified version of it)

- Overall tint and specular values

- Also a texture for the fur strand itself, whose various channels define alpha, and

additional tint and specular

- Film strip texture varies the silhouette of each strand (picked randomly for each

strand0

- The fur strand texture encodeds a number of properties for the shader, including

alpha, and additional tint and specular.

Here are some sample alpha channels of fur strand textures so you can see that

there can be a lot of variety--the second one from the left was for Oscar the Grouch,

and was extracted directly from high res photographs of Oscar.

Because the system ended up being really flexible, we used it in some unexpected

ways, such as making the fur on this character look like it was covered in mud, dirt

and leaves. For this activity we also had a gpu painting system that would allow the

player to dynamically clean the muddy fur off of the character.

And here we made Elmo and Cookie's fur look like it had been dusted with snow

- Simulation for the fur is done with a 3-particle chain at each vertex

- Particles are not allowed to move beneath the skin, and are not allowed to move

more or less than a certain amount apart

- As an artist, for each fur layer I have control over the length of the particle chain, the

stiffness of each segment, and also how much secondary motion, or damping, is

added based on the velocity of the particle when the character is animating or

external forces like wind are applied

- Here is an example of the particle simulation layered on the character animation

(Colored lines are the particle chains, while white lines are the interpolated strands)

- And here is the simulation with final rendering

- thanks to Ray Crook for the test rig and animation used in this talk

- And now Pete will go into more detail about the offline and runtime process

The offline preprocess uses the layer definitions, layout textures, and combing vector

field to generate a list of strands and strand properties.

The most important bits of this are the various ways data is packed and split up so it

can be processed in parallel by several threads, sorted efficiently, and vertices

skinned in software as quickly as possible.

- Compact data per strand, per vertex and per layer

NEXT: runtime

- Roughly reverse of preprocess

In order to update all the strand positions, we first skin the vertices each strand are

constrained to, updating both position and normals.

From this, each strand uses the vertex indices and barycentric coordinates to find the

position of their root, posed normal and tangent.

Shows the mesh vertices and simulation chains.

The mesh vertices don’t need to be extracted from the highest level LOD of the

character – they very often be produced from a lower-level LOD without any visual

change, reducing memory, skinning and simulation costs.

Before each of the individual strands are updated, we determine how much LOD

should be applied when updating the character and rendering. This can use any

technique (screen size, budget, etc) and will just tell us approximately how many

strands should be rendered.

Because we generate the strands in such a way that it progressively covers the

character's surface (where strands later in the buffer are relatively closer to their

neighbors than strands earlier in the buffer), we can progressively drop the last N

strands from the update to perform LOD. This prevents them from being rendered

(the update generates an buffer of indices and sort keys that is used when generating

an index and vertex buffer).

This gives us nearly completely continuous LOD, is extremely cheap, and requires no

additional memory (it does cause some of the underlying updates to run a little slower

due to less coherent access to simulation vertices, but that was acceptable for us). If

the occasional popping out of indivudal strands is a problem, you can fade out the last

few rendered in the buffer.

The ability to very cheaply pick a subset of the strands to render is also very helpful

when rendering shadows.

-Exaggerated example -- coverage remains pretty uniform when we reduce the

number of strands rendered. (images not to scale)

Also a good example why your lower mips should have their alpha changed so

everything doesn’t go too transparent.

Once we have determined how many strands to update and determined the root

position and normal of each strand, we update and interpolate the particle simulation

performed at each vertex.

Three basic constraints suffice to give fairly believable motion, provide some

approximation of fur-to-body collision, and give enough flexibility that the various fur

styles can be modeled.

The simulation uses one fixed and three free particles

- each has a distance constraint between subsequent particles in the chain

- an angular constraint that limits the angle between subsequent segments (and the

first segment + normal)

- and a plane constraint that prevents the chain from coming too close to the body

Each of these has customizable parameters for the entire layer, and the artist can

specify different strengths for each particle in the chain.

In addition, strands have an "simulation" map which determines how much the

simulation is allowed to influence the motion of the strand.

This gives really flexible results, but the one thing they are not is very high resolution.

We need to fix that before rendering.

- Simple sim with 3 points can't be used directly

- Fit a curve to the simulation

- Pass coefficients to vertex shader

- Vertex shader uses curve to deform the strip geometry

- Left: raw keyhairs

- Right: interpolated strand curves

Making sure the strands render roughly back-to-front is critical for the fur transparency

to look good and be stable when the camera or character moves.

To do so, during update of their root we compute a Z value for each strand that will be

used when sorting (distance between the camera and a location on the strand).

Choosing a reasonable Z value for the entire strand is somewhat finicky, we use a

hand-coded approximation of the vertex shader to compute the position roughly 75%

of the way down the strand (this is also quite expensive!), which is then used to

determine a sorting key. This value and computation required a bit of tweaking, and

given time, it would probably have been best to customize this per-character (and

probably per-layer).

Once these values are computed, a fast radix sort is used to simultaneously sort them

and permute a strand index buffer that will be used to generate the fur vertex buffer.

Nice thing about the sorting is that it lets you do some additional culling.

The sorting process is tweaked to allow us to simultaneously cull backfacing strands,

saving CPU time generating the vertex buffer and GPU time rendering them.

Using a configurable tolerance value set per-layer, each strand is tested if the normal

is backfacing. If so, it will generate a special sorting key to force it to the end of the

sorted strands.

If we keep track of the number of front facing (or back facing) strands, this allows us

to skip the last N backfacing strands, saving CPU and GPU time.

NEXT: RENDERING

Using the sorted strand index list, we generate a vertex buffer with one vertex per

strand. This is used in conjunction with the Xbox’s vertex shader instancing support

to combine this data with pre-tesselated strip geometry. The instanced vertex data

includes everything needed to deform the strip, generate UV coordinates, scale the

strip, etc.

All that gives us this. And now all we need to do is make it look nice.

Like this.

Though we originally started to use Marschner et al's hair shading model (similar to

the GPU Gems 2 article by Donnelly and Nguyen), we found Kay-Kajiya was the most

flexible, artist friendly and cheapest solution that gave good results. Thorsten

Scheuermann's presentation in GDC 2004 and in ShaderX3 also provided some good

inspiration. We were lucky as the title’s art and lighting style was very simple.

The fur lighting is fairly simple: all point and ambient light sources are combined into

single band-4 spherical harmonics. Ambient sources were artist placed “irradiance”

samples with two colors and a falloff radius which were interpolated as the characters

moved. This allowed easy authoring of lighting gradients as the character moved in

the scene. Lighting in the title is fairly uncomplicated so no gradients/more complex

techniques were necessary to handle quickly varying lighting environments or large

objects.

To help give a slightly backlit look, we also added an analytic (completely fake) rim

lighting term that is configurable dynamically by the lighting environment. It also can

be used with a "negative" lighting intensity to give a nice defined dark highlight around

the edge of the fur (helps distinguish the silhouette of the character).

- Rim/Backlighting,

- Sun

- Subtle gradients

- "Scary" monster that needs a shower is dark + backlit

- Shadows make a huge difference in hair/fur

- Simple approaches add something, but not enough

- Fake shadow added based on distance between mesh and strand position (dot with

normal)

-Exaggerated effect on right (too dark under chin)

-Important to bake the fake shadowing into the base texture or else your character

skin will look too light.

To get better quality self-shadowing, we used a very simple process that gave us the

“transparent-edged” shadows we were after. We couldn’t use more complex

approaches like deep shadowing/opacity shadow maps/etc, and they might not even

be all that necessary as the fur was often not that thick.

-Render the strands approximately back-to-front into a small buffer, writing z

-Write Z to RGB, and set alpha to additively accumulate a “transparency” value

-A will not saturate to white in around the edges/lightly covered areas

-Use this plus the depth to give soft shadows that get darker the further from the front-

most strand.

Very cheap and gave a nice looking shadow when using low-resolution maps:

success.

Overview of system: start with mesh vertices, do simulation.

Overview of system: strand lines showing the interpolated and smoothed simulation

Wireframe

Base lighting

Final result.

