
Supplemental Talk Outline
Furry, Floppy, Fuzzy: Once Upon a Monster’s Fur Pipeline

Peter Demoreuille∗ Oliver Franzke†

Double Fine Productions
Lydia Choy‡

Figure 1: Raw simulation data, interpolated strand curves, raw geometry, diffuse lighting, final result.

1 Introduction

Sesame Street: Once Upon a Monster required Double Fine Pro-
ductions to faithfully portray well-loved Sesame Street characters
along with a set of furry monster companions. The resulting au-
thoring tools, simulation, tessellation, sorting, shading, lighting and
rendering techniques created an efficient and flexible fur pipeline
that was used to create fur for every character in the title.

2 Overview

The vast majority of fur rendering in videogames can be classified
as a “shells and fins” approach, where a fur-like appearance is gen-
erated by rendering successive overlapping layers of textured geom-
etry (“shells”), coupled with camera-facing geometry along the sil-
houette (“fins”). This approach often leads to a fairly distinctive and
uniform look, and can be expensive to render due to large amount of
overdraw. The approach used in Sesame Street: Once Upon a Mon-
ster instead renders thousands of strands of fur, where the appear-
ance and simulation of each strand can be individually customized
by artists. This allows creating a wide variety of looks, makes con-
tinuous level-of-detail trivial, and can greatly reduce overdraw. Fur
dynamics are inspired by hair simulation techniques, where a sparse
field of key hairs are used to control groups of fur strands. Render-
ing uses an ad-hoc hair shader, spherical harmonic lighting, and a
simplified opacity map to provide self-shadowing.

2.1 Authoring

The fur on each character consists of an arbitrary number of fur lay-
ers, which generally correspond to spatial regions of the character
(eg, belly, arms, head). Each layer is rendered independently, and
as such has complete control over the shader variables, textures,
and other data which influences final fur appearance. While strands
within each layer are sorted by depth, layers can influence layer-
layer sorting order to help minimize transparency sorting issues.

Customizability and localized control are a priority when authoring
fur, and thus a large number of variables have been exposed to con-
trol the appearance of individual fur strands. A single layer is built
using data from three primary sources. A set of textures defined us-
ing the model’s UV space controls per-strand properties including

∗e-mail:pbd@pod6.org
†e-mail:oliverfranzke@doublefine.com
‡e-mail:lydiachoy@mac.com

length, width, curvature, twist, stiffness, and offset from the skin.
Curvature influences the degree to which the strand curves towards
or away from the body, twist controls a strand’s rotation around
the normal, and stiffness controls the degree that each strand reacts
to the simulation. A per-layer data file specifies material proper-
ties such as the shader, diffuse color textures, fur shader attribute
textures, fake-shadowing controls, and specular parameters. The fi-
nal dataset provides a vector “combing” field used to determine the
layout direction of each strand. This data is generated using Maya,
where artists may create a set of vector markers on the surface of
the rigged model. When creating strands, this field is interpolated
taking into account both distance between markers and the differ-
ence between the normal at the marker and strand root, allowing
fine control in tricky areas such as faces and armpits.

Figure 2: Combing vector field in Maya

2.2 Simulation

A simple two-segment chain simulation using several custom con-
straints drives the underlying fur movement. The simulation is up-
dated by software-skinning the vertices to which each chain root
is constrained, updating each chain vertex, then updating each fur
strand by interpolating the nearest three simulation vertices. The
key constraints providing fur-like movement are those limiting the
angle between each segment and preventing penetration of the skin.
Artist control is provided by allowing each fur layer to specify sim-
ulation parameters that influence the gross behavior of the simula-
tion (such as damping and constraint strength), while the per-strand
stiffness texture gives precise local control by dampening or exag-
gerating the movement of individual strands. To lower simulation
cost without noticeable loss in fidelity, the artist can use a lower-



lod model to create the fur simulation data. This will allow a larger
number of strands derive their motion from each key-hair, reducing
memory and CPU consumption.

2.3 Transparency and backface culling

After mesh vertices have been skinned and the simulation updated,
individual fur strands must be updated. Each strand’s location is
computed using barycentric interpolation of the mesh vertices, and
tangents for a cubic curve used to deform geometry in the vertex
shader are computed using the simulation vertices.

As fur uses alpha blending to create a soft and fuzzy look, strands
must be drawn in a stable back-to-front order. To accomplish
this, an approximation of the vertex-shader logic calculates a single
depth-value per strand. A fast integer radix sort is used to sort the
strands and generate an index array to determine draw order. Back-
facing strands in layers with backface-culling enabled generate a
sort key that forces them to the back of the index array, allowing
these strands to be skipped trivially in several subsequent stages.

While strand draw order is fixed to use depth values, the draw or-
der of layers is more customizable. By default, layer bounds are
calculated by their member strands and sorted back-to-front, but
additional controls are provided to bias and offset the final draw or-
der. These controls have proven critical to address edge cases where
layer sort order must be cheated. Attempts to eliminate this problem
by sorting every strand regardless of layer have been made, but this
adds significant overhead: it may require an arbitrarily large num-
ber of draw calls, sorting is slower due to increased cache utiliza-
tion, parallelization is reduced, and peak memory usage is increased
(making it difficult to implement this system in low-memory situa-
tions, such as on the PlayStation(R)3 SPUs).

2.4 Tessellation and level-of-detail

After each strand has been updated with current position and simu-
lation data, sorted, and backface-culled, a vertex buffer is generated
containing compact per-strand data. Geometry instancing (or cus-
tom vertex-fetch on the Xbox 360) is used to create strip geometry
for each strand on the GPU, where the number of subdivisions in
each strip is adjusted to reduce vertex and fragment shader utiliza-
tion. Additional level-of-detail is provided by stochastically prun-
ing the strands that are updated and rendered each frame. A uniform
distribution of strands may be removed from the character by ran-
domly permuting strand data offline, and prematurely ending up-
dates after a certain percentage of the strands have been processed.

2.5 Shading and Lighting

Since the fur system simulates individual hair strands, we initially
implemented shading model for hair fibers described in [Marschner
et al. 2003]. However, its computational complexity and unintuitive
artistic controls quickly presented issues. Due to the stylized art
direction of Once Upon a Monster and the desire for a shader with
more intuitive behavior, we decided to use the phenomenological
model described in [Kajiya and Kay 1989], as the basis of our fur
shading model. Because of the placement and length of fur strands,
removing the additional calculations from the Marschner shading
model did not cause a significant visual change while providing a
significant speed boost.

Our final shading model supports one shadow casting key light sup-
plemented with an unlimited amount of fill lights representated us-
ing spherical harmonics. A rim-lighting term based on the direction
of the key light rounds out the lighting and provides a subtle glow to
the fur’s edges. Balancing the shader workload between per-vertex

and per-pixel operations is critical for good performance. The ver-
tex shader calculates the position of the tessellated vertex and sev-
eral lighting terms. Some degree of per-vertex lighting provided an
excellent tradeoff between quality and performance, as fur strands
are tessellated enough to make interpolated lighting values look
convincing. When computing final fragment color, the pixel shader
first retrieves information about diffuse darkening, glossiness and
transparency from an attribute texture; evaluates the shadow atten-
uation; and computes a final result by combining all of these values
with the lighting calculated in the vertex shader. Our shader did not
support per-pixel color maps for fur, instead the texture of the char-
acter was sampled at the root of the strand in the vertex shader. This
made it also possible to “clean” the characters by dynamically mod-
ifying its texture (using a GPU-based volume painting approach).

While [Lokovic and Veach 2000] or [Yuksel and Keyser 2008]
would provide high-quality fur self-shadowing, in practice they
were too computationally demanding to provide acceptable perfor-
mance. Our solution augments a traditional depth shadow-map with
accumulated opacity information by rendering to a 4-channel color
texture. The RGB channels have alpha-blending disabled and en-
code the depth value of the sample, while the A channel is additively
blended, and accumulates opacity as the strands are rendered back-
to-front into the shadow-map. This data can then be used to provide
the characteristic semi-transparent edges of shadows cast from fur.
Standard filtering techniques may be used when sampling this map,
and provide an additional level of detail when shader complexity
must be reduced due to high numbers of characters.

3 Conclusion

The fur pipeline described has been flexible enough to implement a
wide varity of fur styles, efficiently utilizes the CPU and GPU, and
is extremely artist-friendly while providing high fidelity results.

References

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. In SIGGRAPH, ACM, J. J. Thomas, Ed.,
271–280.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, SIGGRAPH ’00, 385–392.

MARSCHNER, S. R., JENSEN, H. W., CAMMARANO, M., WOR-
LEY, S., AND HANRAHAN, P. 2003. Light scattering from hu-
man hair fibers. In ACM SIGGRAPH 2003 Papers, ACM, New
York, NY, USA, SIGGRAPH ’03, 780–791.

YUKSEL, C., AND KEYSER, J. 2008. Deep opacity maps. Com-
puter Graphics Forum (Proceedings of EUROGRAPHICS 2008)
27, 2.


