
Furry, Floppy, Fuzzy: Once Upon a Monster’s Fur Pipeline

Peter Demoreuille∗ Oliver Franzke†

Double Fine Productions
Lydia Choy‡

1 Introduction

Sesame Street: Once Upon a Monster required Double Fine Pro-
ductions to faithfully portray well-known Sesame Street characters
and along with a set of furry monster companions. The fur au-
thoring tools, simulation, tessellation, sorting, shading, lighting and
rendering techniques created for this goal yielded an efficient and
flexible fur system that was used to author and efficiently render fur
on every character in the title.

The vast majority of fur rendering in games uses a variation of the
“shells and fins” technique, which often leads to a uniform appear-
ance that requires considerable overdraw. Our approach instead
renders thousands of individual fur strands, where the simulation
and appearance of each strand is customizable. This permits a wide
variety of looks, reduces overdraw, provides trivial level-of-detail,
and allows the use of higher-quality key-hair simulation to drive
strand movement. Fur is rendered using an ad-hoc hair shader,
spherical harmonic lighting, and a simplified opacity map for self-
shadowing.

1.1 Authoring

Each character’s fur is built from several fur layers, which gen-
erally correspond to local spatial regions (eg, belly, arms, head).
Customizability and localized control are paramount, and numer-
ous variables are exposed to drive the appearance of layers and in-
dividual strands. Each layer specifies a variety of shader parame-
ters, layout, simulation and sorting controls. Individual per-strand
parameters, such as layout density, length, width, curvature, twist
and stiffness are encoded in textures, while a vector field exported
from Maya is used to determine strand “comb” direction. Curvature
influences the amount each strand curves towards or away from the
body, twist controls a strand’s rotation around its normal, and stiff-
ness controls the degree that each strand reacts to the simulation.
Couplied with the size and layout controls, a wide variety of strand
layouts can be created, from long matted hair to short twisty fur.

1.2 Simulation

A simulation of a two-segment chain with the root constrained
to the character mesh drives fur movement. Constraints provide
hair-like movement, particularly segment-to-segment angle-limits
and approximate collision checks with the character’s skin. The
simulation provides gross controls such as damping and constraint
strength, while precise control is given by the per-strand stiffness
scalar which dampens or exaggerates individual strand movement.

∗e-mail:pbd@pod6.org
†e-mail:oliverfranzke@doublefine.com
‡e-mail:lydiachoy@mac.com

1.3 Transparency and Culling

As fur uses alpha blending to create a soft and fuzzy look, strands
must be drawn back-to-front. Strand position is determined by
barycentric interpolation of mesh vertices and simulation data. An
approximation of vertex shader logic calculates a single depth value
per strand, and an integer radix sort is used to sort and generate an
index array to determine draw order. Backfacing strands generate
a sort key that forces them to the end of the index array and allows
these strands to be trivially culled, providing an optimization for
both the CPU and GPU.

While strand draw order is determined by depth, fur layer sorting is
customizable. Layer bounds are initially calculated by their mem-
ber strands and sorted back-to-front, but additional controls bias
and offset the order and are critical when handling edge-cases.

1.4 Geometry, Level-of-Detail and Shading

After strands are sorted and culled, a vertex buffer containing per-
strand data is generated. GPU instancing is used to expand strip
geometry for each strand, where the number of subdivisions in each
strip may be adjusted dynamically. Additional LOD is provided
by stochasticly pruning rendered strands: a uniform distribution of
strands can be removed by permuting strands offline, and ending
updates after the desired number of strands have been processed.

Our shading model supports one shadow casting key light and an
unlimited number of fill lights. The key light uses Kajija-Kay[1989]
hair shading, and fill lights are projected to (band-2) spherical har-
monics. An analytic rim-lighting term rounds out the lighting and
adds a pleasant glow to the fur. Shadowing is provided by a simpli-
fied opacity map, where fur is rendered back-to-front, accumulating
coverage in the alpha-channel. An additional “fake-shadow” term
is calculated based on the distance between the fur geometry and
character mesh. To compute final fragment color, a base color cor-
responding to the character skin color is fetched, and luminance,
glossiness and transparency scalars are unpacked from a random
frame in a per-layer film-strip texture that provides subtle variation.

2 Conclusion

The fur pipeline developed is flexible enough to implement a wide
varity of fur styles, utilizes the CPU and GPU efficiently, and is
extremely artist-friendly while providing high fidelity results.

References

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. In SIGGRAPH, ACM, J. J. Thomas, Ed.,
271–280.


