BGOC :u:" 3 s@ s Sos oA

Mobile devices as development
platform in Broken Age

Oliver Franzke
Lead Programmer, Double Fine Productions

GAME DEVELOPERS CONFERENCE

plerCOder MOSCONE CENTER - SAN FRANCISCO, CA

MARCH 2-6, 2015 * EXPO: MARCH 4-6, 2015

This talk is about how we integrated iOS and Android devices
into our development pipeline at Double Fine, so that they can
be used not only by engine coders but also by game-play
programmers and even artists.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

What makes a dev platform?

o Fast iteration time
o Content E&#
« Native code Eg:#

« Debuggability
« Game-play script &]
o Native code
o Graphics &

In my opinion a development platform is categorized by two
major factors: Fast iteration time and debuggability.

Being able to iterate very quickly on code and game assets is
paramount, which is why this presentation will focus on this
aspect.

Debuggability helps to identify what happened if things go
wrong.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Developing BA on mobile devices

o« Some of the stuff we did on device
« Game-play programmer wrote touch controls
o VFX artist checked and optimized effects
« Fix shader bugs

Considering the scope of Broken Age and the amount of target
platforms the development team was tiny.

We only had one systems (or engine) programmer assigned to
the project, which was me. I knew from the beginning that I
won't have the time to handle the mobile devices by myself,
so making sure that mobile devices can be used by other team
members was critical. I think this work definitely paid off.

Broken Age is a point and click adventure game and we
wanted to make sure that the game plays just as nice using
touch controls. A game-play programmer was able to tune the
input controls directly on device.

In addition to that our VFX artist worked directly on device to
find areas with performance issues and tweak effects in order
to achieve the target frame rate.

There were also a bunch of shader bugs that only showed up
on specific mobile GPUs which we fixed pretty quickly by
tweaking and hot reloading the problematic shaders.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Double Fine development pipeline

. Target platform: £7 & QA
e Code: compiled on target platform
o Data: shared, authored on Windows

e Same hardware
e Performance characteristics similar
« No per-platform content

At Double Fine we traditionally use Windows as our main
development platform. All of our content creation tools are
running on Windows and we use Visual Studio as our primary
IDE.

This changed a bit when we started to ship games on OSX and
Linux, since we had to build and debug the native code
differently. The data remained the same though, since all
three operating systems (Windows, OSX and Linux) are PCs in
the end of the day. In other words we didn't need to create
and special assets and therefore we didn't need to port any
tools to OSX and Linux.

Content workflow £ & A&

Windows workstation
Iterate [« Author data
~+ Process data i

lCommit

Windows build server
* Process data s

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Double Fine development pipeline

o Target platform:
o Code: compiled on OSX
o Data: not shared, authored on Windows

o Hardware is very different
« Performance varies greatly
« Platform / GPU specific data necessary

Broken Age was our first big cross-platform project that had to
run on iOS and various Android platforms. We used OSX to
author and debug the native code, but the content was still
authored and processed on Windows. Since mobile devices are
very different from a hardware perspective this became a big
problem for us. Porting the tools to work on OSX would have
been too much work and so we had to come up with another
solution to solve the asset tweaking issue.

MARCH 2-6, 2015 GODCONF.COM

GAME DEVELOPERS CONFERENCE® 2015
Content workflow
_ Windows workstation
Iterate « Author data oy
| Commit PVR {8
f Windows build server ETC1 |
» Process data s
l DXT
Sync L
. OSX workstation Test PR
~+ Build and push package g ATC |

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Mobile as development platform

o Broken Age Act 1 package size: ~1.2GB

e Reboot time was ridiculous!
o @3 ~10 minutes*
o 8 - 21 minutes

o Infeasible for development!

* Recent Xcode update reduced reboot time to 2 - 3 minutes

By the time we shipped Broken Age Act 1 on iOS and OUYA
the game was already around 1.2GB big.

This posed a huge problem for us though, since the
turnaround time for any minor script, asset or code change
was very long.

During big parts of the development it took 10 minutes on iOS
to simply reboot the game after a minor change. The most
recent version of Xcode (6) fixed some of these issues, but it
still takes between 2 and 3 minutes to restart.

On Android things are even worse as it takes between 8 and
20 (1) minutes to re-launch the app after a tweak.

Act 2 roughly doubled the amount of content, which means
that the turnaround time also doubles.

Obviously this makes it impossible to use mobile devices
directly during production. In fact this was a big risk for the
project since we ran into various shader bugs on different
mobile devices.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Too slow

« What is going on?
« Relink and update staging data: 10+ seconds
« Data sync and install: ~10 minutes

e Sync (comparison and copy) is bottleneck

We wanted to make mobile devices a regular development
platform and so we started to analyze the problem.

On iOS the root of the issue is that the length of the data sync
through Xcode depends directly on the number (and size) of
files in the staging directory. It doesn’t matter how many files
were actually changed. Xcode data sync is conservative and
doesn’t remove files.

I should also mention that the data sync in the latest version
of Xcode is much faster than the earlier version as it ‘only’
takes between 2 and 3 minutes now.

10

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Incomprehensibly slow

« What is going on?
« Package build time: 4+ minutes
e Data transfer and install: 4 - 17 minutes

o USB speed is bottleneck

On Android things get really bad. The APK (android package)
is essentially a ZIP file that contains the code and all of the
data used by the app. Even a minor change to a asset, script
or source code file makes it necessary to re-create and re-
install the package on the device.

The biggest problem here is the data transfer and the app
install which can take between 4 and 17 minutes for a
package of 1GB .

The transfer speed depends heavily on the USB speed
supported by the device. The numbers on this slide were
measured on a NVIDIA Shield (USB 2) and a Shield Tablet
(USB 3).

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Slow content update

o« Same symptom but different cause

» Different solutions required
. Minimize APK size
» @8 Work around Xcode data sync

The bottom line is that it's impossible to iterate on content in a
meaningful way. Waiting 3 to 20 minutes until you can see the
effects of a tweak is obviously ridiculous and has to be fixed in
order to make mobile devices a development platform.

Even though both iOS and Android have the same problem the
cause is different, so a unique solution is necessary for the
two platforms.

12

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Fast content update

 Minimal APK: No data, just code
 Reduced package build time
o Fast APK transfer and installation

o Deal with data separately
o Only copy added or changed files

Let’s look at Android first as it is much slower than iOS.

The core observation is that building, copying and
installing a package is extremely slow. The only way
around this issue seems to be to reduce the amount of
data in the package.

Since assets take up a majority of the package size we
decided to remove them from the package during the
development. The native and compiled Java code has to
be part of the APK, so our minimal package contains
only that.

Obviously the game still needs to load assets, so we
need to handle it differently.

13

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Fast content update

e Load assets from ‘sdcard’
» Supported by (almost) all Android devices
 Remap file location

RemapFilename (t 1r* filename, * remapped) {
#if DEV
sprintf (remapped, "/sdcard/dfp/dfa/%s", filename);
FileExists (remapped) ;
#else

#endif

}

We decided to move all of our assets into a sub-folder of
the sdcard directory, which is supported by all devices
we encountered.

Data in the sdcard folder can be read and written by the
app, so it's easy to load the game assets from there.

All IO in our engine is routed through a file manager
anyway, so adding file remapping to the new location
was trivial to add. The code on this slide shows our
remap function and as you can see there really isn’t
much to it.

14

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Fast content update

o Data sync

o 1st approach: Consistent file database
¢ Sync changes using ADB (e.g. adb push ...)
o Keep track of files on device
« Update database during sync
« Slow and inconvenient
« Multiple devices: Per-device database?!

That's great now we have to find a efficient way to move
all of the assets into the sdcard folder.

Our first attempt was to launch adb push commands
from python to copy files to the device.

Obviously we don’t want to copy all files every time we
change a asset, so we need to find a way to apply these
incremental changes. In theory you could query file
stats using adb commands, but that is very slow.

Instead we created a database with information about
all files on the device. This way it was easy to identify
which files were added, removed or changed. The
database is updated during the sync.

This worked but it was somewhat cumbersome.

Launching a shell command for each file update is pretty
slow and managing the database can be tricky especially
when using multiple devices.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Fast content update

o Data sync

« 2"d approach: Scan device files
« Naive implementation is slllooooowwww....
o Re-implement ADB protocol based on OS source

https://android.googlesource.com/platform/system/core.git/+/master/adb/

Thankfully the Android OS is open source, so we were
able to analyze the code of the ADB client that runs on
the device.

Turns out that it uses a socket to execute the ADB
commands using a very simple communication protocol.
Rather than spawning a new shell process for each IO
command we simply reimplemented the protocol in
order to be able to efficiently communicate with the
device.

16

Fast content update

o Data sync

« 2nd gapproach: Scan device files (cont.)
o Example: List directory

socket.send (pack (“LIST”, 15, ilcard/dfp/dfa”))

id, mode, size, time, namelen = unpack(socket.recv(1l6))
name = '' if namelen == 0 else _recvall (socket,namelen)
if id == “DONE”: break
if stat.S_ISDIR (mode) :

dirs.append(...)
elif stat.S_ISREG (mode) :

files.append(...)

(dirs, files)

The python (pseudo) code on this slide shows the code
we used to scan all files on the device in order to be able
to find all added, removed or changed files.

17

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Fast content update

o Data sync

« 2nd gapproach: Scan device files (cont.)
e« Compare files and compute diff
» Sync files using ADB protocol
e Very fast
« No database

Once we have the list of changes we apply them by
using the ADB protocol directly.

First we delete all removed files and folders and then we
copy all added or changed files.

This worked very well for us. The communication speed
with the device is optimal and no database has to be
created and kept up to date.

18

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Fast content update

o Results
o Data sync: 15 - 25 seconds
« APK build, copy and install: 30 - 40 seconds

e 10 - 20+ speedup!

By removing all assets from the APK and manually
updating changed content we were able to reduce the
turnaround time for a build to 45 to 60 seconds. The
USB speed still has a big impact on the content update
speed.

Overall we were able to achieve a 10x speedup on USB
3 devices like the Shield Tablet and more than 20x
speedup on USB 2 devices like the OUYA or other older
Android devices.

The numbers on this slide were measured on a Shield
(USB 2) and a Shield Tablet (USB 3).

This is a significant improvement and allowed us to
iterate on game-play scripts (e.g. touch and gamepad
controller) much more quickly (and w/o going insane).

19

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Fast content update (&8

« Minimal staging folder
o Delete unchanged files
o Copy only added or changed files
e Use sync timestamp

e Reduced work for Xcode
e No run-time changes necessary

Since iOS is a closed platform there is no easy way to sidestep
Xcode in order to manually updated changed assets. It would
be great to have a equivalent to ADB, but in the meantime
another solution was necessary.

The key observation with Xcode’s data sync is that copying
changed files to the device is optimal, but identifying which
files require updates is quite slow. Interestingly enough
scanning all files on the device in order to compute the diffs is
independent of whether files were changed or not.

The only way around this behavior is to remove all files from
the staging directory that didn’t change. Our solution
therefore clears the staging folder before adding only files that
were either added or changed.

During development very few files change, so the staging
folder is almost empty and because of that Xcode’s data sync
is minimal.

The other great thing about this approach is that no run-time
changes are necessary since the assets are copied to the real
location.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Fast content update ([@E

e Results
« Relink and update staging data: 15+ seconds
o Data sync and install: 30 seconds

e 13 speedup (latest Xcode 2 - 4 speedup)

Updating the staging data is slightly slower than the
naive approach, but the data sync, app install and
sandboxing are minimal.

Using our solution we were able to achieve a 13x
speedup for asset tweaks.

As mentioned earlier the most recent version of Xcode
does improve the data sync time and the reboot is
therefore ‘only’ 2 — 4 times as fast. It's nice to see that
Apple has obliviously recognized and fixed this problem,
but using incremental asset updates is still beneficial.

21

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Mobile as development platform

e Ideal workflow

Windows workstation Test PVR He LS
Iterate ‘:> . /p\uthor d;at? > i
* Process data
ETC1
DXT
PVR
ATC

Using the fast content update methods described up to this
point was a huge win for us. It allowed us to implement and
test a lot of our mobile-only scripts like the input controller or
menus.

But it still doesn’t allowed us to use mobile devices during
production. What I mean by that is that we can’t give a iPad
to a artist or VFX dude, because in order to be able to see
their work they would need to run the changed assets through
the data pipeline, push them to the device and re-launch the
app. This process is too cumbersome and slow for artists and
therefore unusable for them.

What we really want is to give an iPad to any member of the
team and they can change files on their workstation which will
then be reflected on the device in real-time.

In other words we want to be able to stream assets from a
workstation to mobile devices. This is already pretty common
in console development (e.g. PS4, Xbone).

22

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

File streaming

e NO re-sync necessary*

o Hot-reload changed files

o« No OSX workstation needed

o Artists can work on target device

* Code changes require re-sync

The big advantage of file streaming is that the app on a
mobile device doesn’t need to be updated often. Updates are
still necessary when the (non-script) code changes, which
happened relatively infrequently. In the end we usually re-
synced devices every day or two.

Since assets are loaded directly from the workstation it is also
very easy to hot-reload changed content on the fly. This
became very important when defining level-of-detail strategies
for different devices, since it allowed us to tweak particle
systems effectively.

In addition to that this feature was used heavily to fix shader
bugs. We identify a shader that didn’t work properly and start
editing it and see the results of the tweaks in real-time on the
device. Without hot-reloading my hair would probably be
much more gray today.

Another benefit was that artists didn't need a OSX workstation
to update the builds. We only have a few OSX machines and
they tend to be on programmer desks, since they are
responsible for the platform integration.

23

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

File streaming

Client | Server
By

Game session on device Python-based tool on workstation g

[fopen(), fread() ..

Manager

t. Worker thread 1
Worker thread 2

7 Script file A

Server thread 1 DXT file B

Server thread 2 «— DXT file C
PVR file D

4
v

send (), recv()

'Y
v

Our file streaming is implemented by re-routing all I0
operations to the file streaming manager.

The manager has multiple worker threads that are responsible
to fulfill the incoming requests.

For example the game calls fopen to read a texture. This call
will then be forwarded to one of the worker threads which
sends the request via a socket to the server on the connected
workstation.

The file server waits for incoming requests, executes them and
then sends the resulting data back.

Once the worker thread receives the response from the server
the results are returned to the original caller.

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

File streaming

o Latency optimization
e Use local file cache

Client Server

Game session on device 105
4 '

. '

' v
fread(out, 64, 1, fp)

Python-based tool on workstation 4

Cache MiSS l ' —
File cache —
E—

Intercepting 10 operations and serving them from a remote
source works great, but it's obviously much slower than local
IO.

Because of that we implemented various optimizations to
alleviate this problem.

One way to hide some of the additional latency is by exploiting
data locality. The most common file access pattern in Broken
Age is to open a file and then read data in chunks of various
sizes. We rarely move the file pointer by seeking, so caching
data next to the original read makes the following reads much
faster.

Our cache lines are 256 KB, which is a arbitrary size that
worked best in our experiemnts.

25

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

File streaming

o Latency optimization (cont.)
« Read at least one cache line

Client Server

Game session on device 105
’]
i

Python-based tool on workstation Y
i

! v

fread(out, o4, 1, £fp)

ol | =
? =
ﬁFile cache _ send (), recv() —

256KB

Intercepting 10 operations and serving them from a remote
source works great, but it's obviously much slower than local
IO.

Because of that we implemented various optimizations to
alleviate this problem.

One way to hide some of the additional latency is by exploiting
data locality. The most common file access pattern in Broken
Age is to open a file and then read data in chunks of various
sizes. We rarely move the file pointer by seeking, so caching
data next to the original read makes the following reads much
faster.

Our cache lines are 256 KB, which is a arbitrary size that
worked best in our experiemnts.

26

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

File streaming

o Latency optimization (cont.)
o Exploit data locality

Client Server

Game session on device 105
’

Python-based tool on workstation I
, v
fread(out, 4, 2, fp)

el —

AN -
& i | -

2 ﬁFlle cache —

One way to hide some of the additional latency is by exploiting
data locality. The most common file access pattern in Broken
Age is to open a file and then read data in chunks of various
sizes. We rarely move the file pointer by seeking, so caching
data next to the original read makes the following reads much
faster.

27

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

File streaming

o Latency optimization (cont.)
» fstat() & fopen() read first cache line

Client Server

Game session on device 105
’]

Python-based tool on workstation I

i v
fopen (name, ‘rb’)

1

ﬁFile cache _ send(), recv()

256KB

Opening a file will read the first cache line, because the next
operation will almost always be a read.

28

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

File streaming

o Latency optimization (cont.)
» Cache expires after 5 ms to avoid stale data
e Multiple concurrent requests

e User filter to define streamed files
e Local IO will always be faster

In order to avoid stale data the cache expires after 5
milliseconds or when the file is closed.

In addition to caching we also improve IO latency by serving
multiple requests in parallel. Most of our data is loaded
through IO worker threads anyway, so integrating this was
relatively easy.

Another feature we implemented is to allow partial file
streaming. Even with our latency optimizations using local 10
is still much faster, so we allow the user to specify filter
patterns. Only files that match the pattern will be streamed.
This is helpful since a artist very often wants to concentrate on
a few assets. For example there is no reason to stream all the
big background textures when working on a particle effect or
shader.

29

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

File streaming

e Fully integrated into our game editor 2HB

Overall implementing file streaming wasn’t as straight forward
as the fast content update, but it definitely paid off.

The file streaming is fully integrated into our game editor 2HB,
which (in addition to other things) also allows remote Lua
debugging on the device.

30

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GODCONF.COM

Conclusion

 Mobile as development platform is...
e ...not trivial
e ...worth your time

e ...necessary for 2-b17 project
wory

So if you are planning to ship games on iOS or Android, then
making mobile devices a first-class development platform
definitely pays off quickly.

Being able to quickly iterate on game-play scripts, shaders
and other assets is just as important on mobile devices as it is
on PC or consoles.

Unfortunately mobile devices don’t make this easy out of the
box, but with the techniques I presented today you should be
able to improve your workflow significantly.

31

GAME DEVELOPERS CONFERENCE® 2015 MARCH 2-6, 2015 GDCONF.COM

Thank you!

Questions?

% pixelcoder

