
Scaling from Mobile to High-End PCs:
The Tech of Broken Age

Oliver Franzke
Lead Programmer, Double Fine Productions

Content

• Introduction

• Platform diversity

• Game assets
• Characters

• Environments

• Shaders

Who am I?

• Lead Programmer of Broken Age

• Joined games industry in 2000

• Programming for 25 years

• p1xelcoder

What is Broken Age?

• Classic adventure game by Tim Schafer

• Modern look

• Funded with

• 834% of original funding goal

• We have awesome fans!

• Available on nearly everything*

* See „Platforms“ slide

The look of Broken Age

• Modern HD graphics

• Expressive characters

• Beautiful lively environments

• Parallaxing (2.5D)

• Dynamic lighting

• Real-time reflections

• 2D character shadows

The look of Broken Age

• Typical scenes

Platforms, platforms, platforms!

• Optimistic view: 5 platforms

• Windows

• OSX

• Linux

• iOS mobile & tablets

• Android mobile & tablets

Desktop GPUs

Mobile GPUs

Platforms, platforms, platforms!

• Pessimistic view: 8+ platforms!
• Windows, OSX, Linux

• iOS mobile & tablets

• Android mobile & tablets

• PowerVR

• NVIDIA

• Qualcomm

• Vanilla Android

• Derivates (e.g. OUYA)

Desktop GPUs

Mobile GPUs

Why is this a problem?

• GPUs are very different

• Architectural goals

• Supported features

• Performance characteristics

• Platform fragmentation

• No exact knowledge of device capabilities

• Android fragmentation report:
•http://opensignal.com/reports/fragmentation-2013/

http://opensignal.com/reports/fragmentation-2013/
http://opensignal.com/reports/fragmentation-2013/
http://opensignal.com/reports/fragmentation-2013/

Scalability goals

A brief look at GPU types

• Desktop GPUs

• Maximize throughput

• Lots of VRAM

• High power consumption (100W+)

• No restrictions on draw calls

• Transparency is not a problem

A brief look at GPU types

 Desktop GPUs

Frame

Backbuffer

A brief look at GPU types

 Desktop GPUs

Frame

Backbuffer

A brief look at GPU types

 Desktop GPUs

Frame

Backbuffer

A brief look at GPU types

 Desktop GPUs

Frame

Backbuffer

A brief look at GPU types

 Desktop GPUs

Frame

Backbuffer

...

A brief look at GPU types

• Mobile GPUs

• Low power consumption (~100mW)

• Limited VRAM

• Tiled rendering architecture

• Limitation to draw calls

• Optimized for opaque geometry

• Overdraw is expensive

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

A brief look at GPU types

 Mobile GPUs

Frame

Backbuffer

Memory

Consequences for Broken Age

• Minimize overdraw

• Keep number of draw calls low (<100)

• No render-targets

• Avoid dependent texture look-ups

• Optimize shaders

Characters

• Goals

• Expressive

• Efficient to animate

• Flexible and extendible

• Receive dynamic lighting

• Minimize memory and overdraw

• Use studio expertise

Characters

• Hybrid rig

• Skinned geometry

• Flipbook animation

• Best of both worlds!

Characters

• Hybrid rig – Authoring

• Concept

Characters

• Hybrid rig – Authoring

• Texture layout

Characters

• Hybrid rig – Authoring

• Skinned geometry for body parts

Characters

• Hybrid rig – Authoring

• One skeletal rig for all views!

Characters

• Hybrid rig – Authoring

• Animation

• Joint transform

• Geometry visibility

• Auto lip-sync generation

• Annosoft lipsync library

Characters

• Hybrid rig – Run-time

• Evaluate joint transforms
and subset visibility

• Gather visible body parts

Characters

• Hybrid rig – Run-time

• Sort geometry

•Back-to-front using AABBs

• Batch draw calls

•Subsets that share same state are
rendered with by a single draw call

Characters

● Sorting complications
● Animated rigs like the characters

are attached to joints of other rigs

● Subsets can simultaneously draw
in front and behind other rigs

● Happens frequently in cutscenes

Characters

● Sorting complications

● Rigs can’t be sorted and rendered seperately!

Characters

● Draw call optimization
● Multiple rigs can be added to

the same ‘draw context’

● Subsets from all attached rigs
are sorted and drawn together

Characters

● Draw call optimization
● While this solves the sorting

issue it is inefficient in terms of
draw calls

● Solution: Identify ‘sort islands’
that do not overlap

● Sorting and drawing the
‘islands’ individually reduces
amount of draw calls

Characters

● Draw call optimization

● Naïve: 452
●One subset at a time

● Batching: 220
●Combine subsets with
the same render state

● Optimized: 101
●Use ‘sort islands’

Characters

• Hybrid rig vs. Flipbooks

• More efficient creation

• Repurpose existing tools

• Lower memory footprint (Act 1 assets)

• Boy: ~36MB vs. ~7.4GB (1 : 211)

Hybrid rig + all animations:
10.7MB = 122218 frames (870 anims)
170KB = rig
25.3MB = textures (DXT5)

Flipbook estimation:
Frames = 61109 (anims @ 15fps)
Sprite size = 256 x 512 (DXT5)

Characters

• Lighting – Gradient lighting

• Low-frequency lighting

Characters

• Lighting – Gradient lighting

• Sample nearby sources

• Average top and bottom color

• Approximated normal

• Cheap!

Characters

• Lighting – Rim lighting

• Edge highlighting

Characters

• Lighting – Rim lighting

• Local space normal map

• Average direction and color

• Expensive

Characters

• Lighting – Shadows

• 3 shadow blobs (feet and body)

• Distance to ground drives intensity and radius

Characters

• Lighting – Shadow directionality

Characters

• Lighting – Shadows

• Approximated directionality

Characters

• Lighting - Comparison

Characters

• Lighting - Comparison

Environments

• Goals

• Painted in Photoshop

• Support parallaxing

• Multiple light states

• Minimize memory
and overdraw

Environments

• Authoring

• Concept

Environments

• Authoring

• Whitebox

Environments

• Authoring

• Final painting

Environments

• Authoring
• Groups become scene layers

Scene layers

Environments

• Authoring
• Groups can have vector masks

Vector masks

Environments

• Authoring
• Lighting groups define alternate state

Light state

Environments

• Authoring

• Custom export script

Vector masks

Environments

• Data-build - Calculate mip-maps
• Sharpen mips to counter loss of contrast

• High and low mips are compressed separately

• High mip only gets loaded on high-end platforms

• minimize IO and memory footprint

High mip Low mips

Environments

• Data-build – Chunking
• Split into GPU friendly textures

• Calculate chunk polygons

• Clipper library

• Tesselate geometry

• GLUtesselator

• Omit empty chunks

Environments

• Run-time

• Clip masks minimize overdraw

Environments

• Lighting

• Blend between light states

Draw call statistics

● Avg. draw calls: 53

● Avg. triangles: 2914
Characters

40%

Particles

24%

Environments

29%

Other

7%

The pie is a lie!

Shaders

• Goals
• Optimized!

• Permutations

• No Übershaders!

• Disable features on weak GPUs

• Minimize impact of platform specific code

• ETC1 needs extra alpha texture!

• Support for #include and #if

Shaders

• Optimization
• No precompiled shaders in Open GL ES

• Raw shader source is shipped

• Drivers are very different

• Amount and type of optimizations

• Compilation speed

• Extremely problematic

Shaders

• Optimization
• Offline GLSL optimization

• Creates optimized shader based on original source

• Maximizes performance

• Minimizes size of shader source

• Open source GLSL optimizer

• Thank you Aras Pranckevičius!!!

Shaders

• Optimization – Example (Original)
 #include "common.fsh"

uniform MEDP vec4 g_vTintColor;

uniform MEDP float g_fCrossFadeIntensity;

uniform sampler2D g_samColor2;

varying MEDP vec2 uvVarying;

void main() {

 MEDP vec4 texColor = SampleMainTexture(uvVarying);

 if(g_bCrossFade)

 {

 MEDP vec4 texColor2 = SampleTexture(g_samColor2, uvVarying);

 texColor = mix(texColor, texColor2, saturate(g_fCrossFadeIntensity));

 }

 gl_FragColor = texColor * g_vTintColor;

}

Include

Helper
functions

Precision
modifiers

Permutation

Shaders

• Optimization – Example (Windows)
 varying vec2 uvVarying;

uniform vec4 g_vTintColor;

uniform sampler2D g_samColor;

void main (){

 gl_FragColor = (texture2D (g_samColor, uvVarying) * g_vTintColor);

}

varying vec2 uvVarying;

uniform sampler2D g_samColor2;

uniform float g_fCrossFadeIntensity;

uniform vec4 g_vTintColor;

uniform sampler2D g_samColor;

void main (){

 gl_FragColor = (mix (texture2D (g_samColor, uvVarying),

 texture2D (g_samColor2, uvVarying),

 clamp (g_fCrossFadeIntensity, 0.000000, 1.00000)) * g_vTintColor);

}

Perm: No cross fade

Perm: Cross fade

Shaders

• Optimization – Example (Android ETC1)
 varying lowp vec2 uvVarying;

uniform lowp vec4 g_vTintColor;

uniform sampler2D g_samSplitAlpha;

uniform sampler2D g_samColor;

void main (){

 lowp vec4 tmpvar_1;

 tmpvar_1.xyz = texture2D (g_samColor, uvVarying).xyz;

 tmpvar_1.w = texture2D (g_samSplitAlpha, uvVarying).x;

 lowp vec4 tmpvar_2;

 tmpvar_2 = (tmpvar_1 * g_vTintColor);

 gl_FragColor = tmpvar_2;

}

Perm: No cross fade

Shaders

• Optimization – Example (Android ETC1)

Perm: Cross fade

varying lowp vec2 uvVarying;

uniform sampler2D g_samColor2;

uniform lowp float g_fCrossFadeIntensity;

uniform lowp vec4 g_vTintColor;

uniform sampler2D g_samSplitAlpha;

uniform sampler2D g_samColor;

void main (){

 lowp vec4 tmpvar_1;

 tmpvar_1.xyz = texture2D (g_samColor, uvVarying).xyz;

 tmpvar_1.w = texture2D (g_samSplitAlpha, uvVarying).x;

 lowp vec4 tmpvar_2;

 tmpvar_2 = (mix (tmpvar_1, texture2D (g_samColor2, uvVarying),

 clamp (g_fCrossFadeIntensity, 0.000000, 1.00000)) * g_vTintColor);

 gl_FragColor = tmpvar_2;

}

Shaders

• Permutations – Data-build
• Permutation variables

• Flag (bool)

• Enumeration

• Drastically reduces the amount of permutations

• n << n! + 2

• Generate shader source for all permutations

• ‘Select’ current state using C preprocessor of optimizer

• Omit redundant shaders

Shaders

• Permutations – Run-time
• Only creates used permutation programs

• ~15% are used (average)

• Reuse vertex and fragment shaders

• Permutation variable overrides for level-of-detail

• Only one uniform state

• Force re-apply uniforms when permutation changes

Conclusion

• Think about platforms early on

• Define the constraints

• Artists are magicians!

• Top-down and bottom-up scalability

• Hide platform specific parts where possible

Thank you!

Questions?

http://www.brokenagegame.com/

http://www.brokenagegame.com/

References

• Open source libraries

• GLSL optimizer

•https://github.com/aras-p/glsl-optimizer

• Clipper

•http://www.angusj.com/delphi/clipper.php

• Further reading
• Smedis: Bringing AAA graphics to mobile platforms

•http://www.unrealengine.com/files/downloads/Smedberg_Niklas_Bringing_AAA_Graphics.pdf

https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
https://github.com/aras-p/glsl-optimizer
http://www.angusj.com/delphi/clipper.php
http://www.unrealengine.com/files/downloads/Smedberg_Niklas_Bringing_AAA_Graphics.pdf

