
Note: This article was originally released on the Broken Age backer forum as a technical post. Please 

note that you can still become a slacker backer, which will not only get you the game and the 

documentary by 2 Play Productions but you’ll also get access to more posts like these detailing the 

making of Broken Age: http://www.doublefine.com/dfa 

Today I want to tell you guys about a EXTREMELY important part of game development that is very often 

overlooked, because it’s not as glamorous as game-play programming or writing an engine: The data 

pipeline! In a nutshell the data pipeline is responsible to prepare the assets created by our awesome 

artists to run optimally on the different hardware platforms. It’s actually quite an interesting problem 

and hopefully I can show you that there is way more stuff happening than you might think. 

 

But why do you even need a step between the art creation tools and the game? While it is true that one 

could load the raw data files directly into the game it is very often not desirable mostly for memory and 

performance reasons. Let’s look at image assets as an example, because it is the most platform-specific 

data type for us right now. 



 

As Lee described in a previous forum post the artists are using Adobe Photoshop to paint the scenes as a 

multilayered image which then gets saved as a PSD file (Photoshop’s native file format). In order to see 

the scene in the game they have to export the relevant image data. This is done by running an export 

script that will write out the individual layers as PNG files with associated clip-masks. Let’s ignore the 

clip-masks for now so that we can concentrate on the image data. This export script is the first step of 

the data pipeline for images and its main benefit is that it automates a lot of (tedious) work that the 

artists would otherwise need to do manually. It is a general rule of thumb that a manual workflow full of 

monotonous steps is a huge source for errors, so it is almost always a good idea to automate the work 

as much as possible. 



 

Now since we converted the scene from a high-level asset into individual layer PNG files (and clip-masks) 

we can start to get the separate images ready for the specific GPUs it’ll be used on. The second step of 

the data pipeline is actually quite complex and contains multiple smaller steps: 

1) Mip-map generation 

2) Mip-map sharpening 

3) Image chunking (only for scene layer images) 

4) Texture compression 

Mip-map generation takes the image data from the individual PNG files and generates successively 

smaller versions of it. This is called an image pyramid or mip-map chain. This is important because the 

graphics chip automatically uses these smaller versions to efficiently draw distant or small objects 

without visual noise (caused by aliasing).  



 

Reducing the size of an image basically means that pixel colors are averaged (or blurred). Unfortunately 

this very often reduces the contrast in the smaller images. In order to counter this problem the second 

sub-step increases the local contrast of the mip-maps using an image sharpening filter. 

 

The third sub-step is called chunking. Image chunking deals with the fact that GPUs prefer textures that 

have power-of-two resolutions. In fact some graphics chips require the textures to also be square-

shaped. It is impractical however for our artists to draw the scenes with these constraints in mind, so 



this pipeline sub-step splits the large and irregularly shaped images into smaller (square) textures with 

power-of-two resolutions. The appendix at the end of this forum post will describe in greater detail why 

GPUs prefer textures with these constraints.  

 

The fourth sub-step converts all the image chunks into the hardware-specific data formats. In order to 

support all the hardware platforms we are committed to it is necessary to convert the chunks into 4 (!) 

different texture formats: DXT (Windows, OSX, Linux, Android), PVR (iOS, Android), ATC (Android) and 

ETC1 (Android). These formats have different requirements and characteristics which actually had quite 

a big impact on the engine. If you are interested in why we are using these texture formats rather than 

loading PNG images directly into the game you can check out the appendix at the end of this forum post. 

Be warned though it is quite technical.  

At this point the images are basically ready to be used in the game. Depending on the type of asset or 

the target platform there might be other pipeline steps though (e.g. file compression using gzip). 

Here in Double Fine we call the second pipeline step “munging”. Other names for this process are “data 

cooking”, “content processing” or “data builds”. Here is a list with some of the asset types we use with 

their associated data pipelines: 



• Images (character textures, scene layers, other textures) 

1. Export from Photoshop 

2. Munging 

a. Mip-map generation 

b. Mip-map sharpening 

c. Chunking (scene layers only) 

d. Texture compression 

3. File compression (iOS PVR files only) 

• Character models 

1. Export from Maya 

a. Extract hierarchy of joint-transforms 

b. Extract meshes and group them by materials 

c. Calculate normalized skin-weights for all vertices 

2. Munging 

a. Count number of active joints per subset 

• Animations 

1. Export from Maya 

a. Extract joint-transformation for each frame 

b. Extract subset visibility for each frame 

2. Munging 

a. Strip constant animation tracks in rest position 

b. Strip delta-trans transformations (for non-cutscene animations) 

c. Remove redundant key-frames 

• Shaders 

1. Munging 

a. Resolve file includes 

b. Generate shader permutations 

c. Optimize shaders for target GPU (e.g.  standard OpenGL vs. OpenGL ES 2.0) 

d. Identify and remove redundant shaders 

• Sequences (cutscenes, visual effects, animation events) 

1. Export sequence from sequence editor 

2. Munging 

a. Group commands into sections 

b. Sort commands based on execution priority 

c. Remove redundant data (e.g. fields with default values) 

This concludes this forum post about the pipelines we are using in order to get the data ready for the 

many different platforms the game will eventually run on. I hope I could show you guys that there is 

actually a lot of work that has to be done to an asset before it shows up in the game. It is a very 

important part of game development though, because the representation of the data will very often 

have a profound impact on the memory footprint and run-time performance of the game, so getting it 

into the optimal format is super critical. 



As usual please feel free to ask questions. Also make sure to check out the appendix for the gory 

technical details of efficient texture representations. 

 

Technical appendix: Optimal texture representation 

This appendix will describe why games generally don’t use standard image formats like PNG, JPG or TGA 

to store textures. I will also talk about why GPUs tend to prefer square images with power-of-two (POT) 

resolutions (2ⁿ => 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 …) 

It all comes down to data-access speed. While the execution speed of GPUs (and CPUs) has steadily 

increased both by fitting more transistors onto a the chip as well as adding multiple execution cores the 

latency to read and write data from memory hasn’t improved to the same degree. At the same time 

modern games require more and more data to achieve a high visual fidelity. Higher screen resolutions 

require larger textures in order to keep the texel-to-pixel ratio constant. That leaves us in a bad place 

though because we have super fast GPU cores which need to access more data very quickly in order to 

render a freme efficiently. 

Thankfully there are different things that can be done to improve the situation. As I mentioned above 

textures are very often represented as an image pyramid rather than a single image. The smaller 

versions of the image are called mip-maps and require only a quarter of the memory of its parent image. 

The GPU can leverage the smaller memory footprint of the lower mip-maps for surfaces with smaller 

screen-space coverage (e.g. objects that are far away or oriented almost perpendicular to the camera). 

And this is where it the square and POT requirements come in handy. Textures that abide by these rules 

simplify a lot of the computations required to look up texture-pixels (called texels) at different mip-map 

levels. That means that the GPU can find out very quickly what color a pixel should be on screen. There 

are additional benefits for POT textures too like simplified coordinate wrapping and clamping. 

To speed up data access even further the GPU (just like the CPU) uses the benefits of different memory 

cache levels. The level-1 cache is smallest level in the memory hierarchy, but is the fastest to access. If 

the processor can’t find the requested data in cache it will search the next level which is slightly slower. 

If the data can’t be found in the cache at all a slow non-cache memory access is issued. Rather than just 

retrieving the requested piece of information additional values are fetched and copied into the memory 

caches. This is done in order to be able to benefit from data locality. Locality uses the observation that 

very often when a value is used for computations other data nearby will also be fetched for the 

following operations. The important thing is that the cache implementation is very low-level and 

generally doesn’t know about the type of data (e.g. vertices, textures), so the memory controller simply 

copies a linear section of memory into the cache centered on the address that was accessed.  



 

Unfortunately images are rarely accessed in a linear fashion though. For example texture filtering 

combines multiple adjacent texels into one resulting color. Also graphics chips usually draw 2x2 pixel 

blocks at a time in order to leverage the parallel nature of the rendering computations. These 

observations finally lead us to texture compression, because the major goal of this technique is to lay 

out the texture data in the most efficient way. Rather than expressing an image as a linear array of pixels 

the data is converted into a block-based (or swizzled) representation. This image shows the difference 

between the two different data layouts: 



 

In addition to a cache-friendly data layout texture formats like DXT also compress the pixel data by 

exploiting the fact that the color of neighboring pixels very often doesn’t change very much. That means 

that the difference between adjacent texels can be expressed with fewer bits, which reduces the 

memory required to represent an image. So the GPU has to deal with less data which is formatted in an 

optimal way! Hooray! 

But that still doesn’t explain why we don’t use standard image formats like PNG directly though. Well 

they simply aren’t designed to represent images in the optimal fashion described above. Usually these 

formats don’t support multiple surfaces necessary for mip-maps and the image is expressed as an linear 

array of raw RGBA values. In theory one could load an image from a PNG file and compress it before 

sending it to graphics memory but the compression requires a lot of CPU and memory overhead. Also 

this transformation really should only be done once rather than every time an image is loaded. 

This leads us back to the data pipeline which is the main topic of this forum post. One of the most 

important steps of image munging is in fact texture compression, which will convert the raw image data 

into the data representation preferred by the different GPUs.  

I hope you enjoyed this appendix and that I was able to convince you that compressed textures are 

great and should almost always be used instead of raw images!  


