
Note: This article was originally released on the Broken Age backer forum as a technical post. Please

note that you can still become a slacker backer, which will not only get you the game and the

documentary by 2 Play Productions but you’ll also get access to more posts like these detailing the

making of Broken Age: http://www.doublefine.com/dfa

Today I want to tell you guys about a EXTREMELY important part of game development that is very often

overlooked, because it’s not as glamorous as game-play programming or writing an engine: The data

pipeline! In a nutshell the data pipeline is responsible to prepare the assets created by our awesome

artists to run optimally on the different hardware platforms. It’s actually quite an interesting problem

and hopefully I can show you that there is way more stuff happening than you might think.

But why do you even need a step between the art creation tools and the game? While it is true that one

could load the raw data files directly into the game it is very often not desirable mostly for memory and

performance reasons. Let’s look at image assets as an example, because it is the most platform-specific

data type for us right now.

As Lee described in a previous forum post the artists are using Adobe Photoshop to paint the scenes as a

multilayered image which then gets saved as a PSD file (Photoshop’s native file format). In order to see

the scene in the game they have to export the relevant image data. This is done by running an export

script that will write out the individual layers as PNG files with associated clip-masks. Let’s ignore the

clip-masks for now so that we can concentrate on the image data. This export script is the first step of

the data pipeline for images and its main benefit is that it automates a lot of (tedious) work that the

artists would otherwise need to do manually. It is a general rule of thumb that a manual workflow full of

monotonous steps is a huge source for errors, so it is almost always a good idea to automate the work

as much as possible.

Now since we converted the scene from a high-level asset into individual layer PNG files (and clip-masks)

we can start to get the separate images ready for the specific GPUs it’ll be used on. The second step of

the data pipeline is actually quite complex and contains multiple smaller steps:

1) Mip-map generation

2) Mip-map sharpening

3) Image chunking (only for scene layer images)

4) Texture compression

Mip-map generation takes the image data from the individual PNG files and generates successively

smaller versions of it. This is called an image pyramid or mip-map chain. This is important because the

graphics chip automatically uses these smaller versions to efficiently draw distant or small objects

without visual noise (caused by aliasing).

Reducing the size of an image basically means that pixel colors are averaged (or blurred). Unfortunately

this very often reduces the contrast in the smaller images. In order to counter this problem the second

sub-step increases the local contrast of the mip-maps using an image sharpening filter.

The third sub-step is called chunking. Image chunking deals with the fact that GPUs prefer textures that

have power-of-two resolutions. In fact some graphics chips require the textures to also be square-

shaped. It is impractical however for our artists to draw the scenes with these constraints in mind, so

this pipeline sub-step splits the large and irregularly shaped images into smaller (square) textures with

power-of-two resolutions. The appendix at the end of this forum post will describe in greater detail why

GPUs prefer textures with these constraints.

The fourth sub-step converts all the image chunks into the hardware-specific data formats. In order to

support all the hardware platforms we are committed to it is necessary to convert the chunks into 4 (!)

different texture formats: DXT (Windows, OSX, Linux, Android), PVR (iOS, Android), ATC (Android) and

ETC1 (Android). These formats have different requirements and characteristics which actually had quite

a big impact on the engine. If you are interested in why we are using these texture formats rather than

loading PNG images directly into the game you can check out the appendix at the end of this forum post.

Be warned though it is quite technical.

At this point the images are basically ready to be used in the game. Depending on the type of asset or

the target platform there might be other pipeline steps though (e.g. file compression using gzip).

Here in Double Fine we call the second pipeline step “munging”. Other names for this process are “data

cooking”, “content processing” or “data builds”. Here is a list with some of the asset types we use with

their associated data pipelines:

• Images (character textures, scene layers, other textures)

1. Export from Photoshop

2. Munging

a. Mip-map generation

b. Mip-map sharpening

c. Chunking (scene layers only)

d. Texture compression

3. File compression (iOS PVR files only)

• Character models

1. Export from Maya

a. Extract hierarchy of joint-transforms

b. Extract meshes and group them by materials

c. Calculate normalized skin-weights for all vertices

2. Munging

a. Count number of active joints per subset

• Animations

1. Export from Maya

a. Extract joint-transformation for each frame

b. Extract subset visibility for each frame

2. Munging

a. Strip constant animation tracks in rest position

b. Strip delta-trans transformations (for non-cutscene animations)

c. Remove redundant key-frames

• Shaders

1. Munging

a. Resolve file includes

b. Generate shader permutations

c. Optimize shaders for target GPU (e.g. standard OpenGL vs. OpenGL ES 2.0)

d. Identify and remove redundant shaders

• Sequences (cutscenes, visual effects, animation events)

1. Export sequence from sequence editor

2. Munging

a. Group commands into sections

b. Sort commands based on execution priority

c. Remove redundant data (e.g. fields with default values)

This concludes this forum post about the pipelines we are using in order to get the data ready for the

many different platforms the game will eventually run on. I hope I could show you guys that there is

actually a lot of work that has to be done to an asset before it shows up in the game. It is a very

important part of game development though, because the representation of the data will very often

have a profound impact on the memory footprint and run-time performance of the game, so getting it

into the optimal format is super critical.

As usual please feel free to ask questions. Also make sure to check out the appendix for the gory

technical details of efficient texture representations.

Technical appendix: Optimal texture representation

This appendix will describe why games generally don’t use standard image formats like PNG, JPG or TGA

to store textures. I will also talk about why GPUs tend to prefer square images with power-of-two (POT)

resolutions (2ⁿ => 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 …)

It all comes down to data-access speed. While the execution speed of GPUs (and CPUs) has steadily

increased both by fitting more transistors onto a the chip as well as adding multiple execution cores the

latency to read and write data from memory hasn’t improved to the same degree. At the same time

modern games require more and more data to achieve a high visual fidelity. Higher screen resolutions

require larger textures in order to keep the texel-to-pixel ratio constant. That leaves us in a bad place

though because we have super fast GPU cores which need to access more data very quickly in order to

render a freme efficiently.

Thankfully there are different things that can be done to improve the situation. As I mentioned above

textures are very often represented as an image pyramid rather than a single image. The smaller

versions of the image are called mip-maps and require only a quarter of the memory of its parent image.

The GPU can leverage the smaller memory footprint of the lower mip-maps for surfaces with smaller

screen-space coverage (e.g. objects that are far away or oriented almost perpendicular to the camera).

And this is where it the square and POT requirements come in handy. Textures that abide by these rules

simplify a lot of the computations required to look up texture-pixels (called texels) at different mip-map

levels. That means that the GPU can find out very quickly what color a pixel should be on screen. There

are additional benefits for POT textures too like simplified coordinate wrapping and clamping.

To speed up data access even further the GPU (just like the CPU) uses the benefits of different memory

cache levels. The level-1 cache is smallest level in the memory hierarchy, but is the fastest to access. If

the processor can’t find the requested data in cache it will search the next level which is slightly slower.

If the data can’t be found in the cache at all a slow non-cache memory access is issued. Rather than just

retrieving the requested piece of information additional values are fetched and copied into the memory

caches. This is done in order to be able to benefit from data locality. Locality uses the observation that

very often when a value is used for computations other data nearby will also be fetched for the

following operations. The important thing is that the cache implementation is very low-level and

generally doesn’t know about the type of data (e.g. vertices, textures), so the memory controller simply

copies a linear section of memory into the cache centered on the address that was accessed.

Unfortunately images are rarely accessed in a linear fashion though. For example texture filtering

combines multiple adjacent texels into one resulting color. Also graphics chips usually draw 2x2 pixel

blocks at a time in order to leverage the parallel nature of the rendering computations. These

observations finally lead us to texture compression, because the major goal of this technique is to lay

out the texture data in the most efficient way. Rather than expressing an image as a linear array of pixels

the data is converted into a block-based (or swizzled) representation. This image shows the difference

between the two different data layouts:

In addition to a cache-friendly data layout texture formats like DXT also compress the pixel data by

exploiting the fact that the color of neighboring pixels very often doesn’t change very much. That means

that the difference between adjacent texels can be expressed with fewer bits, which reduces the

memory required to represent an image. So the GPU has to deal with less data which is formatted in an

optimal way! Hooray!

But that still doesn’t explain why we don’t use standard image formats like PNG directly though. Well

they simply aren’t designed to represent images in the optimal fashion described above. Usually these

formats don’t support multiple surfaces necessary for mip-maps and the image is expressed as an linear

array of raw RGBA values. In theory one could load an image from a PNG file and compress it before

sending it to graphics memory but the compression requires a lot of CPU and memory overhead. Also

this transformation really should only be done once rather than every time an image is loaded.

This leads us back to the data pipeline which is the main topic of this forum post. One of the most

important steps of image munging is in fact texture compression, which will convert the raw image data

into the data representation preferred by the different GPUs.

I hope you enjoyed this appendix and that I was able to convince you that compressed textures are

great and should almost always be used instead of raw images!

